2 00 1 Applications of Symmetric Functions to Cycle and Increasing Subsequence Structure after
نویسنده
چکیده
Using the Berele/Remmel/Kerov/Vershik variation of the Robinson-Schensted-Knuth correspondence, we study the cycle and increasing subsequence structure after various methods of shuffling. One consequence is a cycle index for shuffles like: cut a deck into two roughly equal piles, thoroughly mix the first pile and then riffle it with the second pile. Conclusions are drawn concerning the distribution of fixed points and the asymptotic distribution of cycle structure. An upper bound on the convergence rate is given. Connections are made with extended Schur functions and with point process work of Baik and Rains.
منابع مشابه
2 00 1 Applications of Symmetric Functions to Cycle and Increasing Subsequence Structure after Shuffles
Using symmetric function theory, we study the cycle structure and increasing subsequence structure of permutations after various shuffling methods, emphasizing the role of Cauchy type identities and the Robinson-Schensted-Knuth correspondence. One consequence is a cycle index for riffle shuffles when one deals from the bottom of the deck; conclusions are drawn concerning the distribution of fix...
متن کاملApplications of Symmetric Functions to Cycle and Increasing Subsequence Structure after Shuffles
Using symmetric function theory, we study the cycle structure and increasing subsequence structure of permutations after iterations of various shuffling methods. We emphasize the role of Cauchy type identities and variations of the Robinson-Schensted-Knuth correspondence.
متن کاملApplications of Symmetric Functions to Cycle and Increasing Subsequence Structure after Shuffles (part 2)
Using the Berele/Remmel/Kerov/Vershik variation of the Robinson-Schensted-Knuth correspondence, we study the cycle and increasing subsequence structure after various methods of shuffling. One consequence is a cycle index for shuffles like: cut a deck into roughly two equal piles, thoroughly mix the first pile and then riffle it with the second pile. Conclusions are drawn concerning the distribu...
متن کاملFe b 20 01 Applications of Symmetric Functions to Cycle and Subsequence Structure after Shuffles
Using symmetric function theory, we study the cycle structure and increasing subsequence structure of permutations after various shuffling methods, emphasizing the role of Cauchy type identities and the Robinson-Schensted-Knuth correspondence. One consequence is a cycle index for riffle shuffles when one deals from the bottom of the deck; conclusions are drawn concerning the distribution of fix...
متن کاملThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008